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Abstract 

In this paper, approximate solution of Bratu Differential Equation (BDEs) using Falker-type method for 

solving second order BDEs is presented. The approach of collocation and interpolation technique is 

adopted to derive the new method, which is implemented in block mode to get approximation at grids points 

simultaneously.  The method is of order five (5), zero-stable, consistent and convergent with good region 

of absolute stability. The tabular and graphical presentations of the numerical results to the problems 

considered, demonstrate the effectiveness of the scheme in comparison with exact equation. The method 

is therefore recommended for solving second order BDEs. 
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Introduction 

Real life situations concerned with the rate of change of one quantity with respect to another give rise to 

equation (1). The standard Bratu problem of equation (1) is applicable in areas such as: The fuel ignition 

model of the theory of thermal combustion, the thermal reaction process model, the Chandrasekhar model 

of expansion of Universe, radiated heat transfer, nanotechnology and theory of chemical reaction [1]. 

Consider the second Order Differential Equations (ODEs) of the form 

                                                 𝑦′′(𝑥) + 𝜆𝑒𝜇(𝑥) = 0,    0 ≤ 𝑥 ≤ 1      (1) 

Subject to the Initial Value Problem (IVPs) 

𝑦(0) = 𝛼, 𝑦′(0) = 𝛾       (2) 

Where 𝛼, 𝛾, 𝜆constant number for are 𝑦(𝑥) is the unknown functions.  

The Bratu IVPs have been studied extensively by many researches. [3] Studied a numerical solution of (1) 

using variational iterative method. [5] Considered Bratu’s problem by the means of modified Homotopy 

perturbation method. [8] Applied Adomian decomposition method to study the Bratu-type equation. [4] 

Developed an Algorithm using Runge-Kutta method of order four and five for first order system of Ordinary 

Differential Equations (ODEs). [7] Investigate numerical solutions of second order IVPs of Bratu-type 

equation using sixth order Runge- Kutta seven stages method.  [2] Proposed a method for finding an 

approximate function for Bratu differential equations (BDEs), in which trigonometric basic functions. [6] 

Proposed a new approach for solving one-dimensional Bratu’s problem which depends on Bernstein 

polynomial approximation. Developed a numerical solution of second order IVPs of Bratu-type equation 

using Predictor- Corrector method, among others. 
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In this paper, numerical solution of second order Initial Value Problem (IVPs) for the solution of Bratu-type 

equations, using Falkner-type methods of order five is investigated. The exact solution will be compared 

with numerical solutions. 

Methodology 

Derivation of the Method 

 

In this section, we derived linear multi-step methods of the form 

 

 𝛼𝑗𝑦𝑛+𝑗
𝑘
𝑗=0 = ℎ2  𝛽𝑗𝑓𝑛+𝑗

𝑘
𝑗=0 + ℎ2𝛽𝑣𝑓𝑛+𝑣                                               (3) 

 

 

Where α, β are unknown constants, α = 1, β /= 0 and α0, β0 do not both vanish. We 

seek a n  approximation of the form 

 

𝑌(𝑥) =  𝛼𝑗𝑝𝑗 (𝑥)
𝑛
𝑗=0                               (4) 

 

In order to obtain equation (3), Pj(x) = xj is a power series function, k is the step 

number, n, aj are unknown coefficients to be determined. 

Taking k = 3 as the step number, v = k − r as the off step-point and j = 0, 1, 2, 3, the 

continuous approximation is obtained as 

𝑦𝑛+𝑣1
= 𝑌 𝑥𝑛+𝑣1

  

𝑦′
𝑛+𝑣1

= 𝑌′ 𝑥𝑛+𝑣1 

𝑦′ ′
𝑛+𝑣1

= 𝑌′ ′ 𝑥𝑛+𝑣1 

𝑦′ ′ ′
𝑛+1 = 𝑌′ ′ ′ 𝑥𝑛+𝑣1 = 𝑓 𝑥𝑛+𝑣1

   
 
 

 
 

             (5)

 
 

Results and Discussion 

Local Truncation Error and Order 

The linear differential operators associated with the proposed method is of the form 

ℒ{𝑦(𝑥): ℎ} ≡ 𝑌(𝑥) − [𝛼𝑖𝑦𝑛+𝑖 + 𝛼′𝑖ℎ𝑦𝑛+𝑖 + ℎ2  𝛽𝑖(𝑥)𝑦′′𝑛+𝑘 + 𝛽𝑣(𝑥)𝑦′′𝑛+𝑣
𝑘
𝑖=0    ]        (6) 

𝑦(𝑥) is an arbitrary function. 

The Taylor series expansion of (6) around 𝑥 yields  

 

ℒ 𝑦(𝑥) =  𝐶𝑝ℎ
𝑝𝑦𝑝 + 0(ℎ𝑟+2)𝑟+1

𝑗=0

𝐶0 =  𝛼𝑗
𝑘
𝑗=0

𝐶𝑞(−1)𝑞 = [
1

𝑞
 𝑗𝛼𝑗 +

1

(𝑞−1)!
 𝑗𝑞−1𝛽𝑗

𝑘
𝑗=0

𝑘
𝑗=1 ]

𝑞 = 1,2,3…  
 
 

 
 

            (7) 
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Definition 

We say that the methods is of order    𝑝 ≥ 1, if  𝐶0 = 𝐶 = ⋯𝐶𝑝 = 𝐶𝑝+2 = 0 and𝐶𝑝+3 ≠ 0.  In this case, 

expanding the proposed schemes   in Taylor series yields the order of the method below 

  

                                      

𝐶𝑦0 =
−3773

37791360
𝑦(𝑣𝑖)(𝑥𝑛)ℎ

6 + 0(ℎ7)

𝐶𝑦1
3

=
−13

127575
𝑦(𝑣𝑖)(𝑥𝑛)ℎ

6 + 0(ℎ7)

𝐶𝑦1
=

6724321

41334300
𝑦(𝑣𝑖)(𝑥𝑛)ℎ

6 + 0(ℎ7)

𝐶𝑦4
3

=
103

16329600
𝑦(𝑣𝑖)(𝑥𝑛)ℎ

6 + 0(ℎ7)

𝐶𝑦2 =
2921

1322697600
𝑦(𝑣𝑖)(𝑥𝑛)ℎ

6 + 0(ℎ7)

𝐶𝑦3 =
1371637

13778100
𝑦(𝑣𝑖)(𝑥𝑛)ℎ

6 + 0(ℎ7)
.  

 
 
 
 
 

 
 
 
 
 

        (8) 

The order of the methods have order   𝑝 = 5 (See Eq (7)). 

 

Zero-stability and convergence 

This is the concept concerning the behaviour of a numerical method with stability of the first 

characteristic polynomial as h → 0. To analyse the zero-stability of the proposed method, the roots 

of the first characteristics polynomial as ℎ → 0 must be simple or less than 1. 

The proposed scheme can be written in matrix form as 

 

                                                                  𝐴0�̃�𝜇 − 𝐴′�̃�𝜇−1 = 0          (9) 

   Where                                                    �̅�𝜇 = (𝑦𝑛+1, 𝑦𝑛+2, … , 𝑦𝑛+𝑘)
𝑇 

 �̅�𝜇−1 = (𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+𝑘−𝑟)
𝑇 

𝐴0 is the identity matrix. Following the procedure in Ramose, (2019) the proposed methods can be shown 

that 

 

 𝐴0 =

[
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1]
 
 
 
 
 

, 𝐴′ =

[
 
 
 
 
 
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
1
1
1
1
1

0
0
0
0
0
0]
 
 
 
 
 

               (10) 

  

                                                              𝜌(𝑟) = |𝑟𝐴0 − 𝐴′| 

Thus, the proposed methods is zero-stable 

Theorem 1.  A Linear Multistep Methods (LMMs) is said to be convergent if it is consistent and zero-

stable  

Remarks:  The roots of the proposed schemed is obtained as  𝜌(𝑟) = 𝑟5(𝑟 − 1), 𝑟 = 000001. This implies 

that. The proposed methods is convergent. 

Region of Absolute Stability 

As mentioned above, zero-stability is a concept concerning the behaviour of a numerical method for ℎ → 0. 

In order to know if a numerical method will give reasonable result for a given ℎ > 0, we need a concept of 

stability different from zero-stability. Considering the stability function inform 

                                                        𝑀(𝓏) = 𝔥(𝐴 − 𝐶𝓏 − 𝐷𝓏2) − 𝐵                   (11) 
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where 𝓏 = 𝜆ℎ and A, B, C, E are obtained from interpolating and collocating points of the method. Computing 

the stability functions and its first derivative give the polynomial which can be plotted via Matlab 

environment.               .                  

 
Figure 1. Region of Absolute Stability 

Implementation of the Methods 

In this section, the derived method will be implemented on solving some Bratus-type Differential 

Equations (BDEs), present our results on tables and graphs. 

Example 1. Consider the Bratu-type initial value problem 

𝑦′′ − 2𝑒𝑦 = 0,    𝑦(0) = 0, 𝑦′(0) = 0    0 < 𝑥 < 1,   ℎ = 0.1     (12) 

 

        Exact is y(x) = −2ln (cos x). 

 

 

 

                                   Table 1.    Numerical Solution of Example 1 

 

 

𝒙 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑵𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍 𝑹𝒆𝒔𝒖𝒍𝒕𝒔 𝑬𝒓𝒓𝒐𝒓 

0.1 0.010016711246470610 0.010016705039555692 6.2069 E-09 

0.2 0.040269546104816700 0.040269534068873927 1.2036 E-08 

0.3 0.091383311852116038 0.091383294483806199 1.7368E-08 

0.4 0.16445803815011086 0.16445798257310101 5.5577E-08 

0.5 0.26116848088744542 0.26116838871843090 9.2169E-08 

0.6 0.38393033883887544 0.38393021221454393 1.2662E-07 

0.7 0.53617151513586220 0.53617094568409092 5.6945E-07 

0.8 0.72278149362268740 0.72278049873412208 9.9489E-07 

0.9 1.2312529407720285 1.2312342971971592 1.8633E-05 

1.0 1.581096154508463 1.5810605610750254 3.5593E-05 
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                                         Figure 2. Graphical Presentation of Example 1 

Example 2. Consider the Bratu-type initial value problem 

𝑦′′ + 𝜋2𝑒−𝑦 = 0,    𝑦(0) = 0, 𝑦′(0) = 𝜋     0 < 𝑥 < 1,   ℎ = 0.1    (13) 

                                               

 Exact  𝑦(𝑥) = ln(sin(𝜋𝑥)) 

Table 2. Numerical Solution of Example 2 

𝒙 𝑬𝒙𝒂𝒄𝒕 Solution 𝑵𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍 𝑹𝒆𝒔𝒖𝒍𝒕𝒔 𝑬𝒓𝒓𝒐𝒓 

0.1 0.26936833397496114 0.26937161481672322 3.28084E-06 

0.2 0.46246895987938497 0.46247558674988345 6.6268E-06 

0.3 0.59290681818485150 0.59291697911335306 1.0161E-06 

0.4 0.66845107369154235 0.66846508645442245 1.4013E-05 

0.5 0.69314708062662442 0.69316564518558186 1.85646E-5 

0.6 0.66825071630680667 0.66827473800143076 2.4022E-05 

0.7 0.59249578392011496 0.59252733482295458 3.1551E-05 

0.8 0.46182436825450018 0.46186511634825410 4.0748E-05 

0.9 0.26844914001894383 0.26850153969447523 5.2399E-05 

 

 
Figure 3. Graphical Presentation of Example 2 
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Conclusion 

In this study, the method for finding an approximate solution of Bratu’s Differential Equations (BDEs) using 

Falkner-type method of order five is proposed. All the numerical results implemented, shows that we have 

favourably applied Falkner-type method to obtain approximate solution of the BDEs. The proposed method 

have good region of stability and converges. The obtained results are very close to the exact solutions, this 

indicate that a little iteration of the method will result in some useful results. As the result seems necessary 

from the authors’ point of view, the suggested technique has the potentials to be practical in solving other 

similar Ordinary Differential Equations (ODEs).  
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