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Abstract   

As illegal use of fire arms continues to pose security threat across the globe, the need for novel detection 

technique is timely. In this study, visible and thermal images fusion model for security threat detection: a 

CNN study was investigated.  The study deployed the fusion of visible and thermal images techniques to 

design a Convolutional Neural Network (CNN)-based model for security threat detection. Thermal imaging 

data, preprocessing, supervised learning, detection and classification techniques of concealed objects was 

utilized in the model design. The study employed performance metrics, such as accuracy, precision, recall, 

and F1-score, to evaluate the effectiveness of the model. Results reveal that the investigated model 

demonstrates improved detection rates compared to traditional methods, offering a unique solution for 

application insecurity threat detection.  Based on these findings, the study recommended among others 

that in the fast-paced landscape of security, it is vital to establish mechanisms for regular model retraining. 
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Introduction  

Breakthroughs in computer vision and deep learning have created new possibilities for addressing security 

challenges in recent times [1-3]. Object detection is a key task in computer vision that involves identifying 

the presence or absence of specific features within image data. Object recognition is a general term to 

describe a collection of related computer vision tasks that involve identifying objects in digital photographs 

[4]. Object recognition refers to a collection of related tasks for identifying objects in digital photographs [5]. 

It is a crucial application of machine learning and deep learning, aiming to teach machines to interpret 

and recognize the content of an image in a manner similar to human perceptron.  
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Once features are detected, an object can be further classified as belonging to one of a pre-defined 

set of classes [6]. Object Detection algorithms act as a combination of image classification and object 

localization. It takes an image as input and outputs one or more bounding boxes each labeled with a 

class. These algorithms are proficient in handling multi-class classification and localization and detecting 

objects with multiple occurrences. The main approach to detection in thermal infrared has historically been 

thresholding, so called hotspot detection [7].  

Overall, the aim of object detection is to detect all instances of objects from a known class, such 

as people, cars or faces in an image. Object recognition algorithms rely on matching, learning, or pattern 

recognition algorithms using appearance-based or feature-based techniques. Generally, only a small 

number of instances of the object are present in the image, but there is a very large number of possible 

locations and scales at which they can occur and that need to somehow be explored [5].  

Thermal imaging is a non-contact technique where the radiation emitted by an object is converted into a 

visible image called thermal image or thermogram. Any object with temperature above absolute zero 

(−273 °C) emits infrared radiation. The infrared radiation in the wavelength from 3 to 14 µm is called thermal 

infrared region [8]. Thermal imaging is simply the process of converting infrared (IR) radiation (heat) into 

visible images that depict the spatial distribution of temperature differences in a scene viewed by a thermal 

camera [9]. Thermal images are visual representations of emitted, reflected and transmitted thermal 

radiation within a specific area.  

Thermal cameras can be classified as either cooled or uncooled depending on their technology 

and functionality. High-end cooled cameras can deliver hundreds of HD resolution frames per second and 

have a temperature sensitivity of 20 mK. Images are typically stored as 16 bits per pixel to provide a large 

dynamic range, such as 0–382.2K with a precision of 10 mK. Uncooled cameras generally use bolometer 

detectors and operate in LWIR spectrum. Uncooled thermal cameras produce noisier images at a lower 

framerate, but they are smaller, silent, and more affordable. A thermal camera is considered thermographic 

when it is calibrated to measure temperatures accurately [7]. 

Thermal cameras are ideal for perimeter or area protection offering a powerful and cost-effective 

alternative to radio-frequency intruder detection, fences, and floodlights. Since they do not rely on ambient 

light to produce images, they enable discreet surveillance even in complete darkness. In situations where 

some light is needed for identification, thermal cameras can minimize the need for excess illumination. They 

also enhance security in restricted areas, such as, in transportation zones like tunnels, railway tracks, and 

bridges [10]. Indoor applications of thermal cameras include building security and emergency management. 

They can detect humans inside a building after business hours or in emergency situations, such as when 

rooms fill up with smoke. High-security buildings, nuclear power plants, correctional facilities, airports, 

pipelines, and sensitive sections of railways also benefit from thermal camera surveillance to enhance 

safety and monitoring [10]. 
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As innovations and breakthroughs in technology continue, the integration of different image 

modalities and innovative tools for security threat detection such as concealed weapons, will play a pivotal 

role in improving public safety measures and fortifying security protocols in various settings.  Convolutional 

Neural Networks (CNNs) have displayed unprecedented performance in image analysis, facilitating the 

development of robust object detection and recognition systems. By leveraging the power of CNNs, it 

becomes possible to build a model capable of identifying armed individuals by analyzing visual data, such 

as images or video footage.   

In essence, integrating thermal imaging into the model's architecture provides an additional layer 

of information, enhancing its overall effectiveness in recognizing security threats. This multi-modal 

approach can offer superior accuracy and reliability, especially in low-light or challenging environmental 

conditions. It is on this premise that visible and thermal images fusion model for security threat detection: 

a CNN study is presented. 

Research Method 

The primary data for this study was captured using a thermal camera, providing valuable insights into 

temperature variations and heat signatures. The decision to use a thermal camera was driven by its 

capability to offer real-time and accurate data in circumstances whether in industrial settings, medical 

applications or in field of security. It consists of 1062 JPEG thermal images of dimension 2976 x 3968 with 

different temperature ranges. When collecting the experimental data, the temperature was set to a range 

of 28.4 °C to 42.3 °C; the imaging speed was set to 10 frames per second (FPS); emissivity of 0.95, and 

the imaging distance was about 0.6~1.0 m. This method was chosen for its direct and in-depth insights, 

aligning perfectly with the project's focus on detection and recognition of armed persons. In preparation for 

training and evaluation, the thermal images went through a series of preprocessing steps. These steps 

were essential for refining the data captured by the thermal camera, ensuring it is optimized for subsequent 

model training and analysis in the context of designing a model for detection and recognition of armed 

persons using CNN. The dataset was annotated with bounding boxes to mark the concealed weapon's 

location within each image. To account for real-world variations, we applied data augmentation techniques, 

such as random rotations and translations, to create a robust and representative dataset.  

Model Evaluation 

For evaluating the model, the dataset is divided into 2 parts. 80 percent was used in training the model, 

while the remaining 20 percent was used in testing the model. 

Evaluation Metrics 

Scikit learn python library version 1.1.1 will be used for analysis to determine the performance of the 

developed model. When making classification predictions, there are four possible outcomes: True Negative 
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(TN), True Positive (TP), False Negative (FN), and False Positive (FP). These four standard indicators will 

be used to evaluate the performance accuracy of the machine learning model. 

i. True Positive (TP): is when the image is predicted to contain to a weapon and it actually does 

belong to that class. 

ii. False Positive (FP) is when the image is predicted to contain to a weapon and it actually does not 

belong to that class. 

iii. True Negative (TN)is when the image is predicted not to contain to a weapon and it actually does 

not belong to that class. 

iv. False Negative (FN) is when the image is predicted not to contain to a weapon and it actually does 

belong to that class. 

These four indicators help in the understanding of what types of mistakes the learned model made in the 

classification of hidden weapons. They are plotted on confusion matrix which gives a glance view of each 

measurement indicators.  

Model Performance Measurement 

From the four standard indicators, three different measurement criteria can be used to evaluate the rate of 

the correctness of the prediction; they are: Accuracy, Recall, and Precision using Scikit learn version 1.1.1. 

 

Accuracy 

Accuracy measures the percentage of correct predictions of the model over the entire dataset. It shows the 

total number of predictions that are correct from the entire labeled dataset. The equation 5.1 is used to 

calculate the accuracy of the model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
correct predictions

all predictions
=  

TP+TN

TP+FP+FN+TN
       (1) 

But accuracy is not good enough to determine the correctness of the performance of the prediction model 

because if there is a large class skew in the labeled dataset, there will be a differential misclassification 

costs. For our model, we have got 0.96 which means our model is approx. 96% accurate. 

Receiver Operating Characteristic (ROC) curve 

A better way of determining the accuracy of the model is by plotting a Receiver Operating Characteristic 

(ROC) curve. Our ROC value is 94.30%.  The graph is obtained by plotting the True Positive (TP) rate 

against the False Positive (FP) rate while varying the threshold of the positive rate. 

True Positive rate is obtained by the equation: 

True Positive Rate (recall) =  
TP

Actual Positive
=  

TP

TP+FN
       (2) 

While False Positive rate is given by: 

False Positive Rate =  
FP

Actual Negative
=  

FP

TN+FP
      (3) 
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Precision  

Precision is the ratio of correctly predicted positive observations to the total predicted positive observations. 

We have a 0.94 precision which is pretty good. It is given by the formula in equation (4): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
true positives

true positives + false positives
 =

TP

TP+FP
      (4) 

Recall (Sensitivity) 

Recall is the ratio of correctly predicted positive observations to the all observations in actual class. We got 

a recall of 0.92 which is good for this model as it’s above 0.5, it is given by the equation (5): 

     Recall = 
TP

TP+FN
                                     (5) 

F1-Score 

The last performance metric is F1-Score which combines the precision and recall metrics to give a holistic 

view of the overall performance of the model. Our F1 score is 0.931. It is denoted by the formula in equation 

(6): 

Fβ = (1 + 𝛽2 precision.recall

(𝛽2.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
 )             (6) 

 

Results and Discussion 

Performance comparison of the proposed system (DRAP) and existing system (CCTV and X-ray scanner). 

The performance analysis of the models is evaluated based on accuracy, precision, recall, and F1-score. 

The rate of properly detecting the affected photographs from all images is referred to as recall, also called 

sensitivity. Precision is the opposite of recall. The F1-score is a combined measure of precision and recall, 

which shows how often the predicted value is accurate. 

The summarized results of the training is given as follows: 

Accuracy:  0.96 

Precision:  0.94 

Recall:       0.92 

F1 Score:  0.93 

Performance comparison of the proposed system (DRAP) and existing system (CCTV and X-ray sc

anner) 

Table 1 presents the comparison between the existing systems and the new system. 
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Table 1. Comparison between the existing systems and the new system. 

Classifiers  Approaches  Accuracy Precision Recall F1 Score ROC 

VGC-16 
[11] 

VGC-16 framework  90.6%  84.21%  100%   91.43%  93.53%  

YOLOv3-13 
[12] 

YOLO framework  72.7%  80.50%  90.30%  83.00%  78.05%  

DRAP CNN + Tensorflow 96.00%  94.00%  92.00%  93.10%  94.30%  

 

 

Figure 1. ROC and AUC of the CNN model 

 

 

Figure 2. Bar chart showing comparison in metrics for the 3 systems 
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Discussion of Results 

From the results obtained, which are presented in Table 1 as well as graphically in Figure 2, it can be 

inferred that the CNN algorithm (DRAP) predicts the best result with an accuracy of 96.00%. This shows 

an improvement beyond those of [11-12]. Additionally, it is known that the higher the precision and the 

lower the error rate, the better is the model, evidently, CNN, has the highest precision and lowest error rate 

of 0.94 and 0.021 respectively. Therefore, CNN + Tensorflow algorithm was used in developing the 

detection and recognition of security threat system because of its highest accuracy and precision score, 

lowest error rate value and highest area under curve (auc) value of 94.30 as shown in Figure 1. 

Conclusion 

The study concludes that the CNN-based model significantly improved the accuracy and efficiency of 

detecting and recognizing security threat in complex and challenging settings. In comparison with traditional 

models, findings show that the CNN model in this study demonstrates an accuracy of 96%. Thereby, making 

the present model a suitable alternative to traditional models, especially, when accuracy, speed and 

practical applicability count. Furthermore, the real-world applications of the present model have shown its 

potential for deployment in scenarios that demand the utmost in public safety and security. Based on these 

findings, it was therefore recommended among others that in the fast-paced landscape of security, it is vital 

to establish mechanisms for regular model retraining. This ensures the model's adaptability to evolving 

threats, changes in environmental conditions, and improvements in technology. 
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